Streamlit Streaming with LangChain
Lab Overview
Learn how to implement streaming responses with Streamlit and LangChain, enabling real-time text generation in web applications. This lab demonstrates how to create a responsive chat interface that displays AI responses as they are generated, providing a more engaging user experience.
Lab Materials
Key Components
-
Streaming Handler:
class StreamHandler(BaseCallbackHandler):
def __init__(self, container, initial_text=""):
self.container = container
self.text = initial_text
def on_llm_new_token(self, token: str, **kwargs) -> None:
self.text += token
self.container.markdown(self.text) -
Chat Interface:
- Session state management
- Message history tracking
- Real-time response display
- API key management
Technical Implementation
from langchain.callbacks.base import BaseCallbackHandler
from langchain.chat_models import ChatOpenAI
from langchain.schema import ChatMessage
import streamlit as st
Core Features
-
Message Management:
- Session state initialization
- Message history storage
- Role-based message display
-
Streaming Setup:
- Custom callback handler
- Token-by-token display
- Real-time markdown rendering
-
Chat Model Integration:
- OpenAI chat model configuration
- Streaming callback integration
- Response processing
Implementation Steps
-
Environment Setup:
pip install langchain openai streamlit cohere tiktoken
-
Interface Configuration:
- Set up sidebar for API key
- Initialize session state
- Create chat message display
-
Streaming Implementation:
- Create StreamHandler class
- Configure callback system
- Implement token processing
-
Chat Integration:
- Set up chat input
- Configure message handling
- Implement response streaming
Features
- Real-time text generation
- Interactive chat interface
- Message history tracking
- Secure API key handling
- Markdown formatting support
- Role-based message display
- Token-by-token streaming
Technical Components
- StreamHandler for real-time updates
- Session state management
- ChatMessage schema implementation
- OpenAI chat model integration
- Streamlit UI components
Best Practices
- Implement secure API key handling
- Use session state for persistence
- Handle streaming callbacks efficiently
- Implement proper error handling
- Maintain message history
- Format responses appropriately
Prerequisites
- Google Colab account
- OpenAI API key
- Basic Python knowledge
- Understanding of:
- Streaming concepts
- Chat interfaces
- Callback systems
- Web development basics
Advanced Features
- Custom callback handler implementation
- Real-time markdown rendering
- Message role management
- Stateful chat history
- Dynamic response display